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n=1
thesis 0 <A <Ay, < -+~ and 4,1 —4,=>Mn,n=1, 2, 3, ..., the present paper obtains
the rational Miintz approximation rate in Lf, ,; space

R, (f; A)rr, | < Cyo(f, ”71)L1[’D‘ .

Let A={4,};>, be a sequence of real numbers. Given M >0, under the hypo-

for 1 <p < oo, where C, is a positive constant only depending upon M.  © 2001

Academic Press

1. INTRODUCTION

Let Lf, ,; be the space of all p-power integrable functions on [0, 1],
I<p<oo,and Cpg 13=L{ 14, for convenience, the space of all continuous
functions on [0, 1]. Given a nonnegative (strict) increasing sequence {4,},
denote by I7,(A) the set of Miintz polynomials of degree n, that is, all
linear combinations of {x*, x*, .., x*}, and by R,(A) the Miintz rational
functions of degree n, that is,?

R, (A)={P(x)/Q(x): P, Qe II,(A); Q(x) >0, xe (0, 1]}.

! The Research Project of The Mathematical Institute, Ningbo University. Supported in
part by National and Zhejiang Provincial Natural Science Foundations of China and by State
Key Laboratory of Southwest Institute of Petroleum.

21If Q(0) =0, we require that lim,_, o, P(x)/Q(x) exist and be finite.
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For fe LI[’O’I], 1 <p< oo, define

R,(f)r=_f | f=r|p,

re R, (A)

1/p
ofth=sup ([ 1ftrah = fnlrar) . 1<p<ee,

|hl <t

where E=[0,1—h] for 0<h<l,or E=[—h,1] for —1<h<0, and

(f, f)pe=sup  max |f(x+h)—f(x)].

|h|<t 0<x,x+h<1

As we know, it is a hard subject how to estimate general Miintz rational
approximation rate. In the past 12 years, there was some nice work done
in [1-3, 5, 6], and a very hard open problem left in [ 3]. Among them, we
cite a result of Bak [1] here.

THEOREM 1. Given M >0. If 1,1 — 4,= Mn for all n=1, then there is
a positive constant C,, only depending upon M such that

R,(f)r»< Cpr0(f, nil)LOO-

The present paper considers generalizing the above theorem to include
the general L? spaces. In the Miintz rational approximation case, as one
can see from the following proof, this work is not as easy as the usual poly-
nomial approximation case.

We establish the following theorem.

THEOREM 2. Given M >0, 1<p<oo. If A, 1—A,=Mn for all n>1,
then there is a positive constant C,, only depending upon M (independent
of p') such that

R /) pr < Cproo(fin=") .

2. AUXILIARY LEMMAS

For convenience, we always write C as a positive constant that may
depend upon M in various situations although different values may be
assigned®. Also, we always assume that A,,; —A4,> Mn for all n>1 in the
following and f'e Lf, ,; for 1 <p <.

3 We note that C is always independent of p!.
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Following Bak’s idea, we set

Pj(x)_ ]n(x = _All

|| :|\

for j=1, 2,.., n and n=1, 2, .., where 41, =4,, 4)

‘n

3,.,and x;=x; ,= j/n, j=0, 1, .., n. Furthermore, set

_/ln_}“nfl) l’l:2,

Pi(x)
=1 Pi(x)

for k=1, 2, ..., n. First, we need an estimate for r,(x).

re(x) =

(1)

LemMA 1. For any xe[0,1], N=[nx], we have, for k=1, 2, .., n
r(x)< Cexp(—M |N—k|).

One can find the above estimate in the proof of the theorem in Bak [1].
We also need a fundamental result in classical analysis.

Lemma 2. If felLf, 1, 1 <p<oco, and h>0, then
1 1
|, 1 1= f17 de dy < Cheo?( ) s
Proof. Direct calculations lead to
[ ()17 dx dy
1—h91— h
1 y
=2 [ - fordxdy
1—h“1—h
1 0
—2[ [ Uftuty) = S dudy
1—-h'1—h—y

=2 [ 10— SN dy du<2h0(f; h) o
—h1—h—x

For fe Lf, 1, define now
n k/n
Z nr(x) f f(u) du.

Evidently, V,(f, x) € R,(A). We have the following lemma.
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LeMMA 3. We estimate the following:
1

[ )=V 017 dx < CPror(fn ) o,

1—1/n
Proof. Obviously,

n k/n
)=Vl fix)= Xm0 | (00— ) die
k=1 —1)/n

By Lemma 1, ri(x) < Cexp(—M(n—k)) for xe[1—1/n,1] and all k=1,
2, ..., n. First assume 1 <p < oo. By using Hélder’s inequality, we calculate

TR AVRIE

k/n p
= j nrd) [ 1) — )| du| dx
1—1/n (k—1)/n
1 n p—1
<nPJ < y r;;/(zl’—”(x))
1—1/n \p—1
n k/n . P
x Y 20 [ 10—l du| dx (2)
k=1 (k—1)/n

From Lemma 1,

X g < crer > expl—pM(n—k)/(2p~2)

k=1

0 p/(p—1)
< Ccr/(2p=2) < Z eMv/2> < Cp/(pfl)’
then (2) yields that (by Holder’s inequality again)

| =gl ds

<om[ Y[ -l dids @)

1—1n [ (k—1)/n

When p =1, a direct (and much simpler) calculation can be applied to get
the desired inequality (3). That is, for 1 <p < o0, (3) always holds.
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Applying Lemma 1 and Lemma 2 to (3), we get

[ =Vl

<om| Y e [T ) pu)|7 du d

1—1/n j 4 (k—1)/n

—Cn Z o~ PM(i—K)2 f "
K1 (k= 1)/n

[© 1) = fa 17 dude
1—1/n

—k+1
R L o M=0200( £ (n— K +1)/n) 0

(Note that (k—1)/n=1—(n—k+1)/n)

SCPOP(f 1) 3 7 e M2
j=1

© P
< prp(f, 1/,1)” < Z jze—Mj/2>
j=1
< CPo?(f,1/n) 1o,

therefore we are done. ||

The last lemma relates the Steklov functions, and its proof is elementary
and straightforward.

LEMMA 4. Let h>0,0<x<1—h,

h

fi(x)=h"" f f(x+1)dt.

0

Then

fol = A1 dy <ot b,

and

W) =h~'(f(x+h)— f(x)).
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3. PROOF OF THEOREM 2

For feLf, ,,, define V,(f, x) as in (1). Take /1 = 1/n, then*

TR AT

J171/;1 X1
Y k=1

S o) [ ) du

X

p

(by Lemma 4)

nil jj/n

j=1G=1ym
In a similar way to the proof of Lemma 3, by using Holder’s inequality
repeatedly, we have

P
dx.

e X1

Y o) [ fitu) du

k=1 x

1—1/n
J, =V fx d

n—1 .jm n
<cry | PP [x =y |7
j=1"0U—-D/m p_q

x| [ w1 du| dx
n—1 n Jj/n
<Cm 'Y Y k- J|P—1J rP2(x)
j=1 k=1 (G—=1/n

[ 13w du| dx

X

X

n—1 n

=CpPp—P+1 Z z |k—j|P_1
j=1 k=1
1n k-1
xj PP(x + ( —1)/nj f3()|7 du dx
0 x+(j—1)/n
n—1 n
<Cpn7p+l z Z |k_j|p71
j=1 k=1

X

(4)

jl/ (x4 () —1)/n)jxk )P du di |,
0 j?k

where we take x/=(j—1)/n when (j—1)/n<x;_,;=(k—1)/n, and take
x;* = j/n when (j—1)/n>x;_,, or in other words, in any case, we extend

[y f(u) du = fi(x,_,) should be noticed!
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the integration limits. We continue to do the calculation by exchanging

both the integrations and the summations to get

n—1 n Xp_1
Y3 = [ e G- tm [ gl dud
j=1 k=1 x*
n n—1
=Y X k=l
k=1 j=1
x 1/n
x| [ sl [ Rk (= D) dx d
X 0
n n—1
SCPPn=t Y Y lk—j1P " exp(—pM |k — j|/2)
k=1 j=1
Xk —
xj | fo(u)|? du (by Lemma 1).

Together with (4), we have now

[T AT

n n—1
<Cm=? Y, ) |k—jI7~ Vexp(—pM |k —jl/2)
k=1 j=1
Xp—1
x| [ 1l dul.
It is not difficult to deduce the following estimate
n n—1 ) ) Xpe_1 ,
3T el expt—pM k=12 | [ f sl d
k=1 j=1 X
n—1
= ) |k — 17~ exp(—pM |k — jI/2)

[ 1l du

xj

n—1 1—1/n
<cr Yy mP*le*PMmfzzmj | £ (u)|? du
m=1 0

n—1 1—1/n
<Cr Y mrem e [ sl du
0

=1
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0 P A1—1/n
<CP< Y me—Mmf2> L |31 du

m=1

1—1/n
<cr| Il du (6)

From Lemma 4, we see that

[ e =i [ ) = () d
0 0
<o (f.n )0 ™

Combining (5)—(7) with Lemma 4, we then have

[ 10 Vo o017 d

0

1—1/n 1—1/n
<2r <L | f(x)— fu(x |1’dx+ | fn(x) =V, (f, x)|1’dx>
< CPo?(fyn~") 1

hence, with Lemma 3, Theorem 2 is completed. ||

Remark For positive linear polynomial operators with the form >} _, n
X f( %1y J(2) di x P, (x) (for example, the Bernstein-Kantorovich operators),
to cons1der the approximation in L” spaces people usually use some local
asymptotic formulae of P, ,(x) to achieve the required estimates (this kind
of work started from Totik [4], etc.). That method usually cannot be
applied to rational operators, especially to our case. Also, because maximum
functions are used, the constant in Jackson type estimates in polynomial
operator approximation depends upon p for 1 <p < co. From this point of
view, the method used in this paper could be very useful in estimating the
approximation rate by rational operators in L” spaces.
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